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FOREWORD

This report describes an algorithm for the solution of the incompressible Navier-Stokes equa-
tions in which the convective and diffusive terms are wreated independently. This treatment allows
for the use of a second order Godunov method to discretize the nonlinear convection terms. The
resulting scheme is stable for high Reynold’s number flows.

I would like to thank Prof. Ivo Babuska of the University of Maryland, Drs. Jay M. Solomon
and Stephen F. Davis of this Center, and Dr. John B. Bell of Lawrence Livermore National Labora-
tory for their useful ideas and comments concerning this algorithm, and Dr. Richard Lau for his
support of this project.
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CHAPTER 1

INTRODUCTION

The major difficulty in designing algorithms for problems which have both convective and
diffusive terms arises from the fact that the algorithm should work well for both parabolic problems
(when diffusion dominates) as well as for hyperbolic problems (when convection dominates). In the
diffusion dominant case, standard finite element or finite difference methods which yield space cen-
tered discretizations, coupled with a stable time discretization, will generally yield accurate results.
However, central differencing of the convection terms will lead to an unstable (in space) scheme,
evidenced by spurious oscillations. If the oscillations are local, this problem can be alleviated with
an appropriate mesh refinement.! This procedure will fail if either the oscillations are global,? or
they appear in smooth regions of the flow,> which could mislead one into refining the grid in the
wrong area. One remedy to this problem is to incorporate a priori information about the solution
into the difference scheme, which results in schemes which are nearly upwind when convection
dominates and are nearly centered when diffusion dominates.* Although this procedure works well
for one dimensional steady-state problems, its generalization to multidimensional problems has not
yet been successful due to the complicated behavior of the solutions,® and the excessive diffusion
resulting when the operators in each direction are treated as in the one dimensional case.® An alter-
native approach is to split the processes of convection and diffusion, and use independent stable and
accurate schemes for each part.

Various studies have been performed concerning "viscous splitting” in References 7 through
10. When both the diffusive and convective steps are solved exactly, Beale and Majda’ proved that
the error is O(v1?) in L, where 1=Ar is the time step, and v is the viscosity (diffusion
coefficient). Characteristic Galerkin methods, which may be considered as viscous split algorithms
using the method of characteristics for the convection step, applied to convection diffusion problems
were analyzed in References 8 and 9. However, both treatments were only first order accurate in
the time step, due to the use of the backward Euler method for integrating the diffusion step. A
second order viscous split method was analyzed in Reference 10 for the solution to steady state one
dimensional convection diffusion problems, and some of the ideas developed in that paper are used
here as well.

This report is concerned wiih applying viscous splitting to the incompressible Navier-Stokes
equations, employing a higher order Godunov method for the convection step. These methods have
been demonstrated to be extremely successful for solving a wide variety of applications requiring
solutions of hyperbolic systems (see e.g., References 11 and 12 and the references cited therein).
We remark that the algorithm of Bell et al.,'3 which does not independently split the diffusion and
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convection terms, is similar to the split algorithm employed here in the sense that both employ a
Godunov scheme for the discretization of the convective terms as well as a similar projection
scheme for the treatment of the incompressibility constraint.

1-2
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CHAPTER 2

VISCOUS SPLITTING

The time dependent incompressible Navier-Stokes equations in a bounded domain Q are

u, — vVAu + w-Vyu=-Vp +F, (2-1a)
Vu=0, (2-1b)
with initial conditions
u(x,0) = ug(x), forxe Q, (2-1¢)
and boundary conditions
Bu) =b(x) forx e 0Q, (2-1d)

where u = (u,v) is the velocity, p is the pressure, v is the viscosity, and F is a source function.
Equation (2-1b) is the incompressibility constraint and (2-1d) specifies boundary conditions of either
Dirichlet and/or Neumann type on various parts of the boundary d2. When the problem is non-
dimensionalized by a characteristic length and velocity the Reynolds number Re is defined by

Re:-!-.
Y

The solution of (2-1) will be approximated by solving the sub-problems of diffusion and con-
vection separately. That is, (2-1) will be split into Stokes equation (diffusion)

w, - VAw = -Vp + F,

Vw=0,
w(x,0) = wy(x), forxe Q,
B(w)=b, forxe 09, (2-2)
and a convection step
z, +(zV)z=0,
z(x,0) = zyg(x), forxe Q, (2-3)

where the treatment of the boundary conditions for the convection step will be discussed later. Let
S(t) denote the solution operator to (2-2) after a timestep T. That is, w = S(1)w, is the solution to
(2-2) at time ¢t = 1. Also, let C(t) be such that z = C(1)z; is a solution to (2-3) at time 1 =1 . The
viscous split time stepping procedure for the approximate solution to (2-1) is
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u, = S(72)C(V)S(T/2)u,_, (2-4)

where u, is an approximation to u(x,nt). This type of splitting is often referred to as Strang split-
ting.!* In addition, consider a split algorithm in which the diffusion operator is replaced by its
Crank-Nicolson approximation S (trapezoid rule in time). Then w = S(t)w, solves the problem

1 T
—v—z-Aw +w=v—AW, + Wy - 1Vp" + 1F",

2
Vw=0, forxe Q,
B(w) = b(x), forxe 0Q, (2-5)

where the superscript “*" indicates an approximation at time —. In this case the splitting algorithm
p p PP > p g aig

becomes

u, = S(2)C()S(/2)n,_, = [S(t/Z)C(t)S(I/Z)]nuo. (2-6)
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CHAPTER 3

SPATIAL DISCRETIZATION

As mentioned in the introduction, the main advantage of viscous splitting is that different and
independent discretizations of the diffusion and convection steps may be used. In particular, it
allows for the use of schemes of the type discussed in References 11 and 12, which have proven to
be very successful for the solution of hyperbolic conservation laws.

In this report, a second order Godunov method with an approximate Riemann solver is
employed for the discretization of the convective step. For the two dimensional hyperbolic system

uy +F, +G,=0.
This algorithm is outlined in the following steps:

1. Compute and limit the slopes in the x and y directions for each component of the system. This
produces a piecewise linear (not necessarily continuous) profile for u in each direction. The
slone limiting is performed so that this piecewise linear approximation does not introduce
spurious extrema.

2. Compute predicted values at the half time step. The predicted values are computed by
differencing F and G at cell centers using values for u at cell edges from the linear profiles
generated from the previous step. The predicted values are made approximately divergence
free by adding the gradient of the pressure computed from the previous Stokes solve. This
modification is necessary to preserve the formal second order accuracy of the viscous split rou-
tine.

3. Compute numerical fluxes along each edge by approximately solving a Riemann problem in
each direction based on values from the prediction step. These fluxes must be consistent with
the physical flux, i.e.,

F, (u,u) = F(u),
where Fj (u,v) is the numerical flux with states u and v at the left and right, respectively.

4. Correct the solution using the computed numerical fluxes.

The particular implementation employed for the results in this report is described in detail by
Davis.!! The slope limiting performed with these schemes can be shown to have the same effect as
adding artificial viscosity only in regions where the concavity of the solution is charging abruptly,
such as near shocks or interior or boundary layers. The solution of the Riemann preblem associated
with the convection terms of (2-3) results in an upwind scheme depending on the sign of the
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velocity component. Along Dirichlet boundaries only the normal component of the velocity is
prescribed, which is the usual condition for hyperbolic problems. The Courant-Friedrichs-Levy sta-

bility condition restricts the timestep by ct/h =A <1, where ¢ = max( | 2u;; | + 1 2v;; |). This
i
restriction can be improved by a factor of two (c reduced by one half) using a non-conservative

scheme, and with further modifications can be based on the maximum component instead of the
sum (see e.g., Reference 13).

The Stokes solver of the Galerkin Finite Difference Method (GFDM) 331316 was used for the
discretization of S. We outline this method for the case of Dirichlet data. Further details as well as
details of the appropriate modifications for more general boundary conditions may be found in

Reference 3.
This method begins with an approximation of divergence at cell centers given by
1
DpW)is1n,412 = 2h [ui+l.j+l — Uy U T U T Vg T Vi Y T vi.j] (3-1)

and an approximation to the gradient defined at cell vertices by

1 (912,412 = Qicvzjan + iz -12 = 4%'-1/2.,'-1/2] (3-2)

(Gr)i; = =
BT 2 9ivinger2 = Qivrzj-12 + Qic12,j+12 ~ Pic12,-112

for a scalar function ¢ defined at cell centers. The linear operator D, maps a space of mesh vectors
V,, defined at the vertices to a space of mesh scalars W, defined at cell centers, and G, maps W,
into V,. In Reference 15 these spaces are equipped with standard /, inner products such that
D, = G, holds, where G, denotes the adjoint of G,. We remark that these definitions for D, and
G, are the same discretizations that arise from a finite element approximation with bilinear vcloci-
ties and piecewise constant pressures. An important observation employed by the GFDM is that
D, = (WktV2I+12; g =1 m;l=1,..,n} form a basis for the kernal of D, where

gl 12,j412 {((—1>"f,(~1)""'*‘, fori=k,k+l;j=l,l+l}
ij = :

(0,0) for all other i,j (3-3)

The GFDM approximation to (2-5) is then to find W, = 3.0;;'%; 115 ;112 such that
[—V%Ahwh + W, ,‘P] = [V%A,, Won + Wou t+ wF ,‘P] for each ¥ € D, , (3-4)
where A, denotes for example the standard 5 point discrete Laplacian, and |-, | denotes an inner

product on V;. The values for a;; along Dirichlet boundaries are determined by the prescribed data
provided certain compatibility conditions are met (again see References 3 or 15). The pressure is

eliminated from this computation due to the fact that |-G,p" ¥ |= |p*.D,¥|[=0 for each

¥ e D,. However, G,p" can be computed, for use in the convection (predictor) step, using the
discretization of (2-5), after w, is determined from (3-4).

3-2
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CHAPTER 4

NUMERICAL RESULTS

Since the argument for order of accuracy was only formal, we first conduct a numerical con-
vergence study on a smooth time dependent problem. The domain for this problem is the unit
square with homogeneous Dirichlet data and initial conditions

u(x,y,0) = 0.5sin(my )cos(my )sinz('u )
v(x,y,0) = ~0.5sin(rx )cos(mx )sin®(my ) .
Solutions were computed on a sequence of uniform grids with N by N cells with N = 4, 8, ..., 64.

The solutions were computed to time T = 0.125, with the timestep T = h/2 which corresponds to the
Courant number A = .323. Listed in Table 4-1 are the /, differences Ey = ||uy — upy |l;, , where
the /, norm is computed on the coarser N by N grid. From this table the rates of convergence for
Re=0 and Re=1000 are observed to be at least two. For Re= oo, the rate is slightly less although the
asymptotic rate has not been attained for this case.

TABLE 4-1. [, DIFFERENCES AND CONVERGENCE RATES

Re=0 (Stokes) Re=1000 Re=co (Euler)
N-2N Ey Rate Ex Rate Ey Rate

4-8 .848e¢-2 755¢-2 .798e-2
2.22 1.46 1.45

8-16 .183e-2 .275e-2 .291e-2
2.09 2.36 2.26

16-32 | .429¢-3 .534e-3 .606e¢-3
2.03 2.02 1.59

32-64 | .105e-3 .132e-3 201e-3

The algorithm is further demonstrated on a problem of 2-D channel flow over a full step at
Re=100 (based on the inlet height and average inlet velocity). For this problem, the inlet velocity is
parabolic, the channel has height 2 and length 30, the step is 1 unit high and 2 units wide, and the
front face of the step is 6 units from the inlet. Figure 4-1 displays the streamline contours of the
steady state solutions obtained using the viscous split algorithm and the unsplit GFDM'® using

4-1
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conservative centered differencing for the convective terms, on identical 30 by 16 grids. (The plots
are stretched vertically by a factor of two for clarity.) In this case the viscous split solution produces
results similar to streamline upwind type schemes, as described in References 15 through 17, in the
sense that spurious oscillations near the front face of the step are eliminated and the length of the
recirculation region behind the step is not decreased by excessive artificial diffusion.

VISCOUS SPLIT GODUNOV SCHEME

FIGURE 4-1. COMPUTED STREAMFUNCTION CONTOURS OF STEADY STATE
SOLUTIONS AT Pe=100 ON A 30 BY 16 GRID

Further tests on steady state problems for values of Re < 1000 were performed for flow over a
rearward facing step and compared to the experimental results of of Reference 18 (as was done for
the unsplit GFDM in Reference 16) with great success, but these results are not shown here.
Instead, the time evolution of a flowfield at Re=10000 with initial velocities determined from the
steady state Stokes solution is displayed in Figure 4-2. Although the 120 by 32 grid used in the
calculation is insufficient to resolve all details of the flow, particularly near the step, we believe a
reasonable depiction of the gross properties of the flow are preserved. The multiple recirculation
regions have also been observed experimentally,!8 as well as for steady state computations at lower
Reynolds numbers.!®

The generation of stable (but not overdiffused) approximations on grids where all features of
the flow are not resolved has important implications for developing an adaptive mesh refinement
strategy, as demonstrated in References 2 and 10 for one dimensional steady problems. This
feature, in addition to the property that an implicit time integration of the parabolic terms results in

4-2
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a positive-definite symmetric system, makes viscous splitting an attractive approach for solving
Navier-Stokes as well as other classes of problems with convective and diffusive terms.

FIGURE 4-2. TIME EVOLUTION OF COMPUTED STREAMFUNCTION CONTOURS
AT Re=10000 USING VISCOUS SPLITTING ON A 120 BY 32 GRID
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